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Numerical simulation of 
baroclinic waves 
 
The role of models in meteorology 
 
In the computer the meteorologist found a most diverting toy. The effort to develop realistic models, 
first for short-range weather prediction, and more recently for climate simulation and prediction, 
took precedence over attempts to understand the dynamical nature of the large-scale atmospheric 
circulation. Since the governing equations are complex and nonlinear, it seemed to many that their 
numerical solutions would afford the only feasible approach to understanding their implications; and 
so many of the most ingenious brains in the business devoted themselves to refining numerical 
schemes and improving the representations of various unresolved but important processes. The deep 
physical insights into the nature of the atmospheric circulation gained by such men as Rossby and 
Ertel were all but forgotten by a whole generation of atmospheric scientists. A few academic 
meteorologists continued to be drawn to the attempt to reduce the atmosphere to its simplest possible 
essentials, and out of that effort came a deeper appreciation of the way in which nonlinearity 
manifests itself in the atmosphere. The work of Lorenz and others led to the development of so-
called “chaos” theory… This revealed that nonlinearity can act to generate great complexity out of 
really rather simple equations. 
I.N. James (1994), Introduction to Circulating Atmospheres. Cambridge University Press. P. xii-xiii. 
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10.1 Introduction 
 
With the advent of computers, after the Second World War, a few research centres started 
investigating the possibility of numerical weather prediction. In 1950 Charney, Fjortoft and 
von Neuman published a paper, which demonstrated, for the first time, that numerical 
weather prediction was a feasible project1. In the 1950’s, Norman Phillips (19562) and others 
extended this work to climate modelling, by simply running the weather prediction models, 
with an improved description of diabatic processes, such as radiation, for many model years 
and studying the model climate, i.e. the statistics of model weather. This led to the 
emergence of so-called “General Circulation Models”, for which the acronym, “GCM”, 
was introduced. In the 1970’s the ocean was included in these models. Nowadays “GCM” 
stands for “Global Climate Model”. These models include the atmosphere, oceans, the 
cryosphere and much more.  
 From 1980 onwards this line of research developed explosively, together with the 
required computer power. About 40 global climate/weather prediction models have emerged 
that are used by a very large community of researchers to study very diverse problems in 
climate and weather research. Over a time span of many decades several generations of 
scientists, working at different institutes, contributed to the computer code of these models. 
Unfortunately, this computer code (usually in FORTRAN) has now become a “black box” to 
the younger generation of researchers. Too many, especially young climate scientists, under 
the pressure of managers and politicians, are now using these “comprehensive models” to 
produce “quick or easy answers”, which cannot, or hardly, be verified, to quite superficial 
questions. They are thus carried away from “fundamental research”, which should aim to 
increase insight and understanding in favour of producing “engineering-results” 3.  
 This view of the practice and benefit of numerical modelling of weather and climate is, I 
confess, too pessimistic and, in fact, only applies to “Climate modeling”. Impressive 
progress has been attained with numerical weather prediction models, which, in accordance 
with correct scientific practice, are tested every day against observations 4. The following 
three chapters intend to demonstrate how numerical models can also be of great value in 
basic research, if used intelligently, for instance in the form a hierarchy of models of 
increasing complexity, as suggested by Held (2005) (quoted at the beginning of chapter 8).  
 A numerical model which aims to predict the weather down to horizontal scales of 10 km 
or less will have to be based on a rather complete set of equations, including a detailed 
description of the local forcing, such as variations in terrain, condensation heating and 
evaporative cooling, emission, transfer and absorption of long-wave and short-wave 
radiation, conduction of heat at the earth-air interface and upward turbulent transfer of heat, 
momentum and moisture in the boundary layer (figure 10.1). This, obviously, is a very 
extensive and difficult task. 
 Neglecting, for the moment, the fact that there is intrinsic unpredictibility in a nonlinear 
system like the atmosphere 5, we may state that predictability of weather is determined 

                                                
1 Charney, J.G., R. Fjortoft and J. von Neumann, 1950: Numerical Integrtation of the barotropic Vortcity 
Equation. Tellus, 2, 237-254. 
2 Phillips, N.A., 1956: The general circulation of the atmosphere: a numerical experiment. 
Q.J.Roy.Meteorol.Soc., 82, 123-164. 
3 Meehl, Gerald A., and Coauthors, 2009: Decadal Prediction. Can it be skillful? Bull. Amer. Meteor. Soc., 
90, 1467–1485. 
4 Bauer, P., A. Thorpe and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature 525, 
47-55. 
5 E.N. Lorenz, 1963: Deterministic nonperiodic flow. J.Atmos.Sci., 20, 130-141. 
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principally by (a) knowledge of the initial conditions, (b) knowledge of the boundary 
conditions in space, and (c) representation of “forcing” in the model.  
 The initial condition is obtained from a combination of observations, a model prediction 
from a previous state (e.g. six hours earlier), which represents a first guess, and the 
requirement that the velocity field and the pressure field are in some kind of dynamic 
balance (e.g. geostrophic balance). This last requirement is imposed in order to prevent as 
much as possible the excitation of waves in the model from imbalances due to observation 
errors. However, there is the danger that this condition also filters out real imbalances that 
are essential for the (further) development of certain weather systems. Another problem with 
the balance condition is that the equations describing the balanced state must be of the 
elliptic type. Only then can a unique initial state be found. The potential vorticity inversion 
equation, which is dicussed at length in chapter 7, is an example of such an equation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 10.1. A climate model is based on the differential equations describing the budgets of mass, 
energy and momentum in the oceans and atmosphere, together with the appropriate equations of 
state. The domain of a climate model is divided into a 3-dimensional grid. Numerical approximations 
of the equations are formulated for each grid point. Note that we are confronted with a problem at the 
pole due to the convergence of the meridians. This so-called “pole problem” is discussed in 
interesting paper by D.L. Williamson in the list of references to this chapter). Source of the figure: 
https://en.wikipedia.org/wiki/General_Circulation_Model.  
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FIGURE 10.2. Processes in a normal weather prediction model or full general circulation model 
(GCM) (left); processes in the “dynamical core” of a primitive equation model (right). 
 
 The principal measurements that are used to initialize a model are measurements of 
vertical profiles of wind, temperature and moisture. At first sight, the spatial and the 
temporal resolution as well as the accuracy of the present upper air observation system 
(radiosondes, satellites, radar-networks and other ground-based remote sensing installations) 
hardly seems adequate for numerical weather forecasting. Nevertheless, numerical models 
seem to perform surprisingly well in forecasting the weather a few days ahead. This 
indicates that the expected errors in the initial state are usually and fortunately not 
detrimental. Probably this is due to the fundamental fact that the dynamics of the atmophere 
at all scales is slaved to the large scale potential vorticity distribution (chapter 7). 
 In 2006 the IFS model of ECMWF 6, which is based on the same equations as the model 
described in this chapter, had a resolution of about 25 km. The 2006 version of the model is, 
therefore, able to resolve circulations with horizontal scales larger than 50 km. There are 91 
levels between the Earth's surface and 80 km above sea level. There are 76,757,590 grid 
points in the upper air and 3,373,960 grid points in surface and sub-surface layers. The 
domain covers the whole globe and, therefore, does not need the specification of lateral 
boundary conditions7.  

                                                
6 ECMWF: European Centre for Medium Range Weather Forecasts. See http://www.ecmwf.int/research/  
7 The 2016 version of IFS has a resolution of 16 km and 137 vertical levels . 
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 The current generation of numerical weather prediction models, used for short range (6 to 
36 hours) high-resolution weather prediction, cover a "limited area", for instance Western 
Europe and the adjacent Atlantic Ocean. Therefore, lateral boundary conditions are 
required for these models. These boundary conditions are obtained from the output of a 
numerical model with a lower resolution covering a larger area (e.g. the global IFS model of 
ECMWF). A study performed by Anthes et al. (1989)8 has shown that the lateral boundary 
condition is the most important factor determining the skill of a limited area model for 
forecast-periods up to 36 hours. This also demonstrates that large-scale motions have a 
major, if not dominant, effect on the evolution of the smaller scale (i.e. meso-scale) motions.  
 The representation of the diabatic forcing, such as absorption of radiation, depends on 
our theoretical knowledge of the physical processes responsible for the forcing. Finding a 
good representation of the forcing, especially when this forcing is operating on a relatively 
small scale (such as the process of evaporation at the Earth's surface or latent heat release in 
clouds), is probably the most difficult aspect of numerical modelling of atmospheric 
circulations. For example, for the simulation and prediction of the formation of a tropical 
cyclone the representation of the forcing due to latent heat release is of crucial importance. 
The evolution and, therefore, the predictability of fog depends strongly on the longwave 
radiative cooling at top of the fog layer, the shortwave radiative warming of the fog by 
absorption and the penetration of Solar radiation through “holes” in the fog layer, which can 
then lead to warming of the boundary layer from below. The formation of thunderstorms, on 
the other hand, depends very strongly on moisture flux convergence (chapter 4), which, in 
turn is determined by the lower boundary conditions, i.e. the the moisture content and other 
properties of the lower boundary (the earth’s surface). 
 

 
 
FIGURE 10.3. Conceptual model, proposed by Shapiro and Keyser in 1990, but strongly inspired on 
work originating in a classical publication due to the “Bergen School of Meteorology” (Bjerknes, J., 
1919: On the structure of moving cyclones. Mon.Wea.Rev., 47, 95-99), of four stages in the life-
cycle of an unstable baroclinic wave (frontal cyclone evolution), over a period of the order of 3 days. 
Source of this figure: A.T. Semple, 2003: A review and unification of conceptual models of 
cyclogenesis. Meteorol.Appl., 10, 39-59. 

                                                
8Anthes, R.A., Y-H Kuo, E-Y Hsie, S. Low-Nam and T.W. Bettge, 1989: Estimation of skill and uncertainty in 
regional numerical models. Q.J.R.Meteorol.Soc., 115, 763-806. 
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 In the following a detailed description is given of an adiabatic numerical model of the 
atmosphere. Apart from having simplified boundary conditions, the physical content of this 
model is very similar to the adiabatic physical content, i.e. the dynamical core, of present 
day weather prediction model (figure 10.2). This chapter shows how the dynamical core of a 
primitive equation model can be used to study the life-cycle of an adiabatic unstable 
baroclinic wave (figure 10.3). This has become a classical problem in numerical 
modeling of atmospheric dynamics. We will discover that the adiabatic dynamical core of 
a primitive equation model is able to reproduce the observed life-cycle of a middle latitude 
cyclone, a so-called “baroclinic life-cycle”, over a period of 3-5 days, as illustrated in 
figure 10.3, very faithfully. This simulation will serve as an illustration of the theory of 
wave-zonal mean flow interaction, which is presented in chapter 11. 
 In chapter 12 we will add parametrisations of diabatic processes (“diabatic” forcing), 
associated with radiation and the water cycle, to this model, so that we are equipped to study 
the large-scale adjustment of the atmosphere to seasonal changes in radiative fluxes and to 
changes in the intensity of the hydrological cycle. 
 
 
10.2 Primitive equations 
 
If we assume that motions in the atmosphere are hydrostatic, the governing equations can be 
written with pressure as a vertical coordinate. The resulting system then consists of three 
prognostic equations (the x- and y-components of the momentum equation and the 
thermodynamic energy equation) and three diagnostic equations (the continuity equation, the 
hydrostatic equation, and the equation of state), constituting a closed system of equations 
referred to as the primitive equations. With pressure as a vertical coordinate these 
equations are (Box 9.1). 
 

€ 

du
dt
− fv = −

∂Φ
∂x
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ p
,         (10.1) 

€ 

dv
dt

+ fv = −
∂Φ
∂y
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
p

,         (10.2) 

€ 

∂Φ
∂p

= −α ,           (10.3) 

€ 

dθ
dt

=
J
Π

,           (10.4) 

€ 

∂u
∂x

+
∂v
∂y

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
p

+
∂ω
∂p

= 0  .         (10.5) 

 
The unknown variables are the horizontal velocity,   

€ 

! v , the vertical velocity, ω, the 
geopotential, 

€ 

Φ, and the potential temperature, θ. The specific volume, α, can be expressed 
in terms of the potential temperature, θ, using the ideal gas law and the definition of the 
potential temperature.  
 If we want to describe large scale circulations accurately, especially at high latitudes we 
must take the sphericity of the Earth’s surface into account. In a spherical form, appropriate 
to the Earth’s non-planar surface, the primitive equations are slightly more complex. The 
three directions are then: longitude (λ), latitude (φ) and radial distance (r) measured from the 
Earth’s centre. The velocity components in terms of these coordinates are, 
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€ 

u = rcosφ dλ
dt

≈ acosφ dλ
dt
;v = r dφ

dt
≈ a dφ

dt
;w =

dr
dt

.     (10.6) 

 
The primitive equations in this curved coordinate system, again with pressure as a vertical 
coordinate are 

 

€ 

du
dt
− f +

utanφ
a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ v = −

1
acosφ

∂Φ
∂λ

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ p
= −

∂Φ
∂x
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ p
,      (10.7) 

€ 

dv
dt

+ f +
utanφ
a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ u = −

1
a
∂Φ
∂φ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
p

= −
∂Φ
∂y
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
p

,      (10.8) 

€ 

∂Φ
∂p

= −α ,           (10.9) 

€ 

dθ
dt

=
J
Π

,           (10.10) 

€ 

1
acosφ

∂u
∂λ

+
∂ v cosφ( )

∂φ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p

+
∂ω
∂p

= 0 .       (10.11) 

 
The material derivative in the spherical coordinate system is written as (

€ 

r ≈ a = 6370 km) 
 

€ 

d
dt

=
∂
∂t

+
u

acosφ
∂
∂λ

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ p
+
v
a

∂
∂φ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
p

+ω
∂
∂p

,      (10.12) 

 
which is the same as 
 

€ 

d
dt

=
∂
∂t

+ u ∂
∂x
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ p
+ v ∂

∂y
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
p

+ω
∂
∂p

 .       (10.13) 

 
 
10.3 The sigma coordinate system 
 
The (x, y, p, t) coordinate system possesses certain advantages over the (x, y, z, t) system, 
relating to the simplification of the primitive equations. However, the task of imposing the 
lower boundary condition is not easy. A solution to this problem was first proposed by 
Norman Phillips was the first to propose the so-called “sigma-coordinate“ system, which 
greatly simplifies this task. In the sigma-coordinate system the vertical coordinate is not 
pressure, but pressure normalized by the pressure at the earth's surface (ps), i.e. 
 

€ 

σ ≡
p
ps

 .           (10.14) 

 
Therefore, σ is nondimensional. The lower boundary condition, i.e. at the earth's surface, is 
σ=1 and dσ/dt=0, even with varying height of the earth's surface. 
 We must now transform the set of equations (10.7-11) to σ−coordinates. Figure 10.4 
sketches the problem at hand. The gradient of the geopotential on a surface of constant 
pressure needs to be expressed as a gradient of the geopotential on a surface of constant σ. 
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FIGURE 10.4. Illustrating the transformation of the geopotential gradient from the pressure 
coordinate to the sigma-coordinate (see text). 
 
We can write, 
 

€ 

ΦC −ΦA
δx

=
ΦC −ΦB

δp
δp
δx

+
ΦB −ΦA

δx
. 

 
Assuming that δx⇒0 and δp⇒0 we obtain 
 

€ 

∂Φ
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
σ

=
∂Φ
∂p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
∂p
∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
σ

+
∂Φ
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p

 . 

 
This can be rewritten as follows. 
 

€ 

∂Φ
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
σ

=
∂Φ
∂p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
∂p
∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
σ

+
∂Φ
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p

=
∂σ
∂p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
∂Φ
∂σ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
∂p
∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
σ

+
∂Φ
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p

=
1
ps

∂Φ
∂σ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ σ

∂ps
∂x

+
∂Φ
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p

=σ
∂Φ
∂σ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
∂ln ps
∂x

+
∂Φ
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p

 

 
With this, the two horizontal components of the momentum equations with σ as vertical 
coordinate becomes 
 

€ 

du
dt
− f +

utanφ
a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ v = −

∂Φ
∂x
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ σ
+
σ
ps
∂ps
∂x

∂Φ
∂σ

 ,      (10.15) 

 

€ 

dv
dt

+ f +
utanφ
a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ u = −

∂Φ
∂y
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
σ

+
σ
ps
∂ps
∂y

∂Φ
∂σ

 ,      (10.16) 

 
where the total derivative is 
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€ 

d
dt

=
∂
∂t

+
u

acosφ
∂
∂λ

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ σ
+
v
a

∂
∂φ

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ σ
+
dσ
dt

∂
∂σ

 .      (10.17) 

 
The equation of continuity can be transformed by writing the horizontal divergence as 

 

€ 

1
acosφ

∂u
∂λ

+
∂ v cosφ( )

∂φ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p

=
1

acosφ
∂u
∂λ

+
∂ v cosφ( )

∂φ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
σ
−
1
ps

∂p
∂λ

∂u
∂σ

−
1
ps

∂p
∂φ

∂v cosφ
∂σ

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪  
            (10.18) 

 
To transform the term ∂ω/∂p we note first that  
 

€ 

∂
∂p

=
∂

∂σps
=
1
ps

∂
∂σ

 .         (10.19)
 

 
Therefore, the continuity equation can be written as 
 

€ 

1
acosφ

∂u
∂λ

+
∂ v cosφ( )

∂φ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
σ
−
1
ps

∂p
∂λ

∂u
∂σ

−
1
ps

∂p
∂φ

∂v cosφ
∂σ

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
+
1
ps
∂ω
∂σ

= 0.  (10.20) 

 
The “vertical velocity” in the sigma coordinate system is 
 

  

€ 

dσ
dt

=
d
dt

p
ps

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

1
ps

dp
dt

−
p

ps
2

dps
dt

=
ω
ps

−
σ
ps

dps
dt

=
ω
ps

−
σ
ps

∂ps
∂t

+
! v ⋅
! 
∇ ps

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .  (10.21) 

 
Differentiating this equation with respect to σ yields 
 

  

€ 

∂
∂σ

dσ
dt

= −
∂ps
∂t

+
! v ⋅
! 
∇ ps

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
∂
∂σ

σ
ps

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

σ
ps

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
∂
∂σ

∂ps
∂t

+
! v ⋅
! 
∇ ps

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

∂
∂σ

ω
ps

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 
or 
 

  

€ 

ps
∂
∂σ

dσ
dt

= −
∂ps
∂t

+
! v ⋅
! 
∇ ps

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −σ

∂
∂σ

! v ⋅
! 
∇ ps( ) +

∂ω
∂σ  

 
Using (10.18) and (10.20) we obtain the definitive form of the continuity equation: 
 

€ 

∂ps
∂t

+
1

acosφ
∂psu
∂λ

+
∂ psv cosφ( )

∂φ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ + ps

∂
∂σ

dσ
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0  .     (10.22) 

 
The hydrostatic equation, with σ as vertical coordinate, may be written as 
 

€ 

∂Φ
∂σ

= −
RT
σ

= −
Rθ
σ

p
pref

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

R /c p
        (10.23) 
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where we have made use of the equation of state, and the definition of potential temperature, 
θ. The potential temperature equation may be written as  
 

€ 

∂θ
∂t

+
u

acosφ
∂θ
∂λ

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ σ
+
v
a
∂θ
∂φ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
σ

+
dσ
dt

∂θ
∂σ

=
J
Π

      (10.24) 

 
 If we now multiply the continuity equation (10.22) by θ, multiply (10.24) by ps, and add 
the two resulting equations we get flux form of the potential temperature equation (in σ-
coordinates) 9: 
   

€ 

∂psθ
∂t

= −
1

acosφ
∂psuθ
∂λ

+
∂psvθ cosφ

∂φ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

∂
∂σ

psθ
dσ
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

psJ
Π

 , 

 
which can also be written as 
 

€ 

∂psθ
∂t

=
psvθ
a
tanφ − ∂psuθ

∂x
+
∂psvθ
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

∂
∂σ

psθ
dσ
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

psJ
Π

 .    (10.25) 

 
An analogous transformation of the momentum equations (10.7-8) to σ-coordinates yields 
 

€ 

∂psu
∂t

= −
∂psu

2

∂x
+
∂psuv
∂y

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ −

∂
∂σ

psu
dσ
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + f +

2utanφ
a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ psv −

1
acosφ

ps
∂Φ
∂λ

+ RT ∂ps
∂λ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

            (10.26) 
 

€ 

∂psv
∂t

= −
∂psuv
∂x

+
∂psv

2

∂y

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ −

∂
∂σ

psu
dσ
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − f +

utanφ
a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ psu +

psv
2

a
tanφ − 1

a
ps
∂Φ
∂φ

+ RT ∂ps
∂φ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

            (10.27) 
 
The set of equations (10.22), (10.23), (10.25), (10.26) and (10.27) contains the six 
independent variables u, v, dσ/dt, θ, Φ and ps. Therefore, we need an additional equation to 
make this set solvable. This additional equation is obtained by integrating the continuity 
equation (10.22) vertically and using the boundary conditions, 
 

€ 

dσ
dt

= 0 at σ = 0 and σ =1 .         (10.28) 

 
The result is 
 

€ 

∂ps
∂t

= −
1

acosφ0

1
∫

∂psu
∂λ

+
∂ psv cosφ( )

∂φ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ dσ = −

∂psu
∂x

+
∂psv
∂y

−
psv
a
tanφ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dσ

0

1
∫ .  (10.29) 

 
                                                

9 Up to this point in the text the subscript σ indicates that the partial derivative is calculated with σ held 
constant. In the following we drop this subscript. 
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 The set of equations (10.22), (10.23), (10.25), (10.26), (10.27) and (10.29) form a 
complete set of equations which, if the diabatic heating, J, is known and, if boundary 
conditions are specified, can be solved numerically on a grid of points distributed in a 
regular way in space and time (figure 10.1), by approximating the derivatives using finite 
differences. This yields a so-called "primitive equation model".  
 
10.4 Formulation of a three-level primitive equation model 
 
This section describes a three level version of a primitive equation model, which was 
developed by the author, assisted by several students 10, principally for educational purposes. 
A two level version of this model is described in Holton (1979) 11. The atmosphere is 
divided into three layers separated by levels labeled 0, 2, 4 and 6 (see figure 10.5). These 
levels are defined in terms of σ. Level 0 corresponds to σ =0; level 6 corresponds to σ =1. 
Layers are referred to with the index k, while levels or surfaces are referred to with the index 
n. 

 
FIGURE 10.5. Vertical structure of the three-level primitive equation model (see the text). Note that 
n=2k-1. 
 
 The momentum equation and the potential temperature equation are applied at levels 
n=1, 3 and 5, which in terms of σ are at the centre of the three layers. Thus, for example, eq. 
10.25 takes the form 
 

€ 

∂psθ
∂t

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ k
=

psvθ
a

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ k
tanφ − ∂psuθ

∂x
+
∂psvθ
∂y

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
k
−

∂
∂σ

psθ
dσ
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
k

+
psJk
Πk

 .  (10.30) 

 
where k is the index of the layer. The vertical gradient of the vertical velocity is 
approximated with finite differences as follows. 
 

€ 

∂
∂σ

dσ
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
n

=

dσ
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
n+1

−
dσ
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
n−1

Δσ
 ,       (10.31) 

 
                                                

10 Koen Manders, Niels Zweers and Rosmarie de Wit. 

11 Holton, J.R. 1979. An Introduction to Dynamic Meteorology. Second Edition. Academic Press 391 pp. 
Strangely, the explicit description of this model was not included in later editions of this well- known textbook. 
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where n=2k-1 and Δσ=1/3. Writing the continuity equation (10.22) for layers 1, 2 and 3 with 
vertical derivatives replaced by centred difference, we obtain 
 

€ 

∂ps
∂t

+
1

acosφ
∂psu1
∂λ

+
∂ psv1cosφ( )

∂φ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

ps
Δσ

dσ
dt

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ n=2
= 0      (10.32) 

€ 

∂ps
∂t

+
1

acosφ
∂psu2
∂λ

+
∂ psv2 cosφ( )

∂φ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

ps
Δσ

dσ
dt

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ n=4
−
dσ
dt

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ n=2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0    (10.33) 

€ 

∂ps
∂t

+
1

acosφ
∂psu3
∂λ

+
∂ psv3cosφ( )

∂φ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

ps
Δσ

dσ
dt

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ n=4
= 0     (10.34) 

 
If equations (10.32), (10.33) and (10.34) are added we get the finite difference form of the 
surface pressure tendency equation: 
 

€ 

∂ps
∂t

= −
1

acosφ
∂ ps u1 + u2 + u3( )( )

∂λ
+
∂ ps v1 + v2 + v3( )cosφ( )

∂φ

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
 .   (10.35) 

 
Equations (10.32), (10.33) and (10.34) can also easily be manipulated to yield equations for 
the vertical velocity at levels 2 and 4. Subtracting (10.33) from (10.32) and subtracting 
(10.34) from (10.33) yields two equations. Multiplying the former equation by 2 and adding 
this to the latter equation yields: 
 

€ 

dσ
dt

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 2
=

−Δσ
3psacosφ

2 ∂psu1
∂λ

−
∂psu2
∂λ

−
∂psu3
∂λ

+ 2 ∂psv1cosφ
∂φ

−
∂psv2 cosφ

∂φ
−
∂psv3cosφ

∂φ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

            (10.36) 
 
Multiplying the latter equation by 2 and adding this to the former equation yields: 
 
 

€ 

dσ
dt

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 4
=

−Δσ
3psacosφ

∂psu1
∂λ

+
∂psu2
∂λ

− 2 ∂psu3
∂λ

+
∂psv1cosφ

∂φ
+
∂psv2 cosφ

∂φ
− 2 ∂psv3cosφ

∂φ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

            (10.37) 
 
The geopotential in the different layers must be determined from the potential temperature 
using the hydrostatic relation (10.23). Here we use an alternative form, i.e. 
 

€ 

∂Φ

∂pκ
=
∂Φ
∂p

∂p
∂pκ

=
−α

κpκ−1
=
−RT
κpκ

=
−Rθ
κpκ

p
pref

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

κ

=
−c pθ

pref
κ

,    (10.38) 

 
where we have used the hydrostatic relation in pressure coordinates, the equation of state 
and the definition of potential temperature. This form of the hydrostatic relation is easier to 
approximate with finite differences than (10.23). Applying (10.38) at levels 2 and 4 yields 
(subscripts indicate the level, n) 
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€ 

Φ1 −Φ3 =
−c pθ2

pref
κ p1

κ − p3
κ( ) ≡ A; Φ3 −Φ5 =

−c pθ4

pref
κ p3

κ − p5
κ( ) ≡ B .   (10.39) 

 
We now ascertain that (using the equation of state and eq. 10.23) 
 

€ 

∂σΦ
∂σ

=σ
∂Φ
∂σ

+Φ =Φ− pα .        (10.40) 

 
Applying this equation to layers 1, 2 and 3 (i.e. levels n=1, 3 and 5), and adding the resulting 
three equations yields (subscripts indicate the level, n) 
 

€ 

Φ1 +Φ3 +Φ5 = 3Φ6 + ps σ1α1 +σ3α3 +σ5α5( ) ≡ C .     (10.41) 
 
The geopotential at the Earth's surface, 

€ 

Φ6 , is a known function of x and y. Combining 
equations (10.39) and (10.41), we get the following expressions for the geopotential at levels 
1, 3 and 5: 
 

€ 

Φ1 =
1
3

2A + B + C( ); Φ3 =
1
3
−A + B + C( ); Φ5 =

1
3
−A − 2B + C( ) .   (10.42) 

 
10.5 The multilevel primitive equation model 
 
It is straightforward to construct a version of the model with any number of layers. The only 
complication comes with the solution of the hydrostatic equation. This section decribes the 
method of solution of the hydrostatic equation if the number of layers is equal to K. The 
discrete form of eq. 10.38 is 
 

€ 

Φk+1 −Φk
pk+1
κ − pk

κ = −
c p θk+1 +θk( )

2pref
κ  .        (10.43) 

 
 
The discrete form of eq. 10.40 now becomes 
 

€ 

Φs
Δσ

= Φk − psσkαk( )
k=1

K
∑  ,        (10.44) 

 
where Φs is the geopotential at the surface of the Earth. The above two equations form a set 
of N equations with N unknowns, which can be written compactly as  
 

€ 

Φ1
.
.
.

ΦK

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

= M−1

X1
.
.
.
XK

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 ,         (10.45) 

 
where 
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€ 

Xk = −
1
2
Πk+1 −Πk( ) θk+1 +θk( ) 

 
for k=1…K-1, (the Exner function, Π=cpT/θ, see section 1.13) and 
 

€ 

XK =
Φs
Δσ

+ ps σkαk( )
k=1

K
∑          (10.46) 

 
and the matrix M is defined as 
 

€ 

M =

−1 1 0 . . . 0
0 −1 1 0 0
. .
. .
. .
0 . . . 0 −1 1
1 1 . . . 1 1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

.       (10.47) 

 
The geopotential at each level is found from eq. 10.45 after inverting M.  
 The local tendency of surface pressure is calculated from (10.29) with knowledge of the 
wind, after which the σ−vertical velocity is calculated by applying (10.22) to successive 
levels from top to bottom (or vice versa) (see e.g. eqs. 10.36 and 10.37). 
 
 
10.6 Domain, numerical approximations and initial condition 
 
To simulate the life cycle of an unstable baroclinic wave in mid-latitudes (section 10.7) we 
assume that the horizontal domain is a “channel”, with a length, L, in the longitudinal 
direction, with periodic boundary conditions on the west and east side. At the southern 
and the northern boundaries the first and second order derivatives of all quantities 
perpendicular to the boundary are set to zero. The grid is a so-called "lat-lon" grid with 
dimi=72 points in the zonal direction and dimj=116 points in the meridional direction. The 
gridpoint distance, Δx in the zonal direction depends on L, according to Δx=L/dimi. In this 
section we neglect the convergence of the meridians, which implies that Δx=constant. In the 
single simulation, discussed in section 10.7, Δx≈65.5 km, which is equivalent to 
L=60°[longitude] at 45° latitude with dimi=72. The grid distance in the latitudinal direction 
is Δy=0.6°≈66.6 km. The curvature of the Earth’s surface is neglected. The Coriolis 
parameter, f=f0=10-4 s-1. With the periodic boundary conditions in east-west direction, the 
model is able to simulate the growth and decay (i.e. the life cycle) of an unstable baroclinic 
disturbance with a prescribed wavelength, L, at reduced computational cost. The wave 
moves out of the domain at the east side and re-enters at the western side, or vice-versa.  
 The advection-, pressure gradient- and Coriolis terms in the momentum- and potential 
temperature equation (10.25-27) are approximated with the MacCormack scheme12, which 

                                                
12 Mendez-Nunez, L.R., and J.J. Caroll, 1993: Comparison of leapfrog, Smolarkiewicz, and MacCormack 
schemes applied to nonlinear equations. Mon.Wea.Rev., 121, 565-578. 
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is good at handling large gradients. The time step is kept very small (4 s 13). This is because 
horizontally propagating acoustic (Lamb) waves (chapter 3) are part of the solution, while 
diffusion and surface friction, which are usually incorporated to damp high frequency and 
small scale variations, are neglected. The surface pressure equation is solved using centred 
differences in space and the same two-step in time (“predictor-corrector”) scheme in time, as 
in the MacCormack scheme.   
 The fields of ps, psu, psv, and psθ are smoothed with a horizontal five-point smoother14 
once every 3 hours of simulation time. This filters out so-called "2Δx" waves, which, despite 
the small time step tend to appear after three hours of simulation.   
 
 
10.7 The life-cycle of an unstable adiabatic baroclinic planetary wave: 
fronts and vertical motion 
 
 It is instructive to start this section by quoting one of the chief discoverers of baroclinic 
instability (Charney, 1947)15. In a conversation with George Platzman in 1980 (Lindzen et 
al., 1990)16, Platzman posed him the following question: 
 
Platzman: Do you think this problem (baroclinic instability) has been solved? 
 
Charney: Oh, I think that if you talk about the stability of zonal flow, purely and simply, of the 
simple zonal flow, I think it has been largely solved by now. But if you take the finite amplitude 
problem, or the relationship of the upper wave and the frontal wave, if you carry them to the realm 
where they can be observed so you must necessarily deal with the finite-amplitude problem, I think 
that they're far from having been solved. And it has always been a matter of puzzlement to me why 
the linear solutions do bear a resemblance to the observed motions. Especially if you used some of 
the modern filtering techniques, let's say time filtering, so that you can manage to look at only the 
motions with a certain frequency range. 
 
In 1980 the solution of the problem of a growing baroclinic wave and its relation to the 
observed life-cycle of middle latitude cyclones was still in its infancy. Of course, there were 
conceptual models largely due to the Bergen School, based on the pioneering work by J. 
Bjerknes17, published in 1919, but the theory explaining the coarse of events (the life-cycle) 
as depicted in figure 10.3 was just beginning to be developed 18. Starting in the 1970’s 
numerical simulations of the growth of a baroclinic wave were performed, which, together 
with the emerging adulthood of the theory of frontogenesis, gave considerable insight into 
the dynamics of middle latitude cyclones.  

                                                
13 A time step of 4 seconds seems unnecessarily small! A similar operational hydrostatic model with a grid 
distance of about 60 km employs a time step in order of minutes, but these models require many filters (in 
space and time) that damp numerical oscillations and instabilities. 
14 Haltiner, G.J., and R.T. Williams, 1980: Numerical Prediction and Dynamic Meteorology. Second 
edition. John Wiley & Sons. 477 pp, p. 397. 
15 Charney, J.G., 1947: The dynamics of long waves in a westerly current. J.Meteorol., 4, 135-163. 
16 Lindzen, S., E.N. Lorenz and G.W. Platzman, (eds), 1990: The Atmosphere – A Challenge. The Science 
of Jules Gregory Charney (American Meteorological Society). 
17 Bjerknes, J., 1919: On the structure of moving cyclones.  Geofys.Publ., 1, 8 pp. 
18 Davies, H.C., 1997: Emergence of the mainstream cyclogenesis theories. Meteorol.Zeitschrift, 
N.F. 6, 261-274. This article gives an interesting account of the history of cyclogenesis theories. 
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 This section discusses the results of one single numerical simulation of the life cycle of 
an unstable baroclinic wave in a periodic channel on an “f”-plane (f is constant), using a 36-
level version of the primitive equation model.  
 The model is initialised with a prescribed three-dimensional distribution of geopotential, 
similar to the geopotential distribution given by eq. 9.78a. However, the background state of 
a uniform zonal flow, in a geostrophic equilibrium, that is prescribed in the linear analysis 
(section 9.7), and also in connection with solution of the omega-eqaution in section 9.9 (eq. 
9.78a), is definitely not realistic. In reality a zone of intense meridional temperature contrast 
is usually concentrated in a relatively narrow band running from west to east and 
meandering in the meridional direction. The important question of how this intense 
temperature contrast is formed is not treated here, but in chapter 12. 
 Here, the following more realistic initial geopotential distribution is prescribed: 
 

€ 

Φ(x,y, p,t) =Φ0(p) − yscale f0U0 tanh
y − y0
yscale

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ cos

πp
2p0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .    (10.48) 

 
In other words, the linear dependence of Φ on y (eq. 9.78a) has been replaced by a 
hyperbolic tangent y-dependence around the central latitude, y=y0. This restricts the 
temperature gradient to the range y0-yscale<y<y0+yscale. Therefore, yscale represents the 
horizontal width of the front and associated jet. The pressure at the Earth’s surface at t=0 is 
constant, i.e. at the Earth’s surface, p=ps(x,y,t)=p0=1000 hPa. This implies that, initially, 
surfaces of equal sigma are also surfaces of equal pressure. It also implies that the 
geostrophic wind is zero at the Earth’s surface. 
 The geopotential at y=y0, Φ0(p), is determined from the integration of the hydrostatic 
equation after prescribing the temperature at y=y0 according to the formula, 
 

€ 

T0 z( ) = T0 0( ) −Γ0z  ,         (10.50) 
 
where T0(0) is the temperature at t=0, at z=0 (the Earth’s surface) and Γ0 is the temperature 
lapse rate, i.e., using the equation of state, p=ρRT, and hydrostatic balance, ∂p/∂z=-ρg, 
 

€ 

Γ0 = −
dT0
dz

= ρ0g
dT0
dp

=
pg
RT0

dT0
dp

=
g
R
d lnT0
d ln p

,      

 
or 
 

€ 

d lnT0 =
RΓ0
g

d ln p  .19         (10.51) 

 
Γ0 is assumed to be constant (=6.5 K km-1). 
  The geostrophic wind, associated with (10.48), is 

 
 

                                                
19 If we impose a constant lapse rate of 6.5 K km-1, which is typical for the troposphere, and a surface 
temperature of 285 K, the temperature will go below absolute zero above about z=44 km! The highest model 
level is located at σ=14 hPa, which corresponds to z≈27 km. A constant lapse rate of 6.5 K km-1 will, thus, not 
lead to physically unrealistic model temperatures as long as the surface temperature is higher than 175 K.  
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FIGURE 10.6. Geostrophic zonal wind (according to eq. 10.52, with U0=50 m s-1 and yscale=500 km, 
and potential temperature, according to thermal wind balance, as a function of latitude and pressure 
at initial time. Labels are indicated in m/s and K, respectively. The 295 K isentrope intersects the 
surface of the earth, while the 300 K isentrope does not. Therefore, all isentropes below the 295 K 
isentrope belong to the “Underworld”, while all isentropes above the 300 K isentrope belong to the 
“Middleworld” or “Overworld” (figure 1.48). 
 
 

€ 

ug = −
1
f0
∂Φ
∂y

=U0 cos
πp
2p0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 1− tanh2

y − y0
yscale

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 .     (10.52) 

 
In terms of latitude, φ, this can be expressed as, 
 

€ 

ug =U0 cos
πp
2p0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 1− tanh2

φ − φ0
φscale

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 .       (10.53) 

 
According to (10.53), the zonal geostrophic wind peaks at latitude, φ=φ0, and falls off to zero 
if |φ-φ0|>φscale. The geostrophic wind, according to eq. 10.52, assuming that U0=50 m s-1 and 
yscale=500 km, as a function of latitude and pressure, is shown in figure 10.6. Also shown is 
the potential temperature, which is calculated from (10.53) by integrating the equation for 
thermal wind balance (eq. 9.81): 
 

€ 

∂T
∂y

=
pf0
R

∂ug
∂p

,        

 
assuming a temperature profile at y=y0, given by eq. 10.50 with a constant lapse rate, Γ0=6.5 
K km-1 and with T0=285 K.    
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FIGURE 10.7. Geopotential height (thin solid dark blue lines; contour interval is 50 m, thick line 
corresponds to 5250 m) and potential temperature (cyan lines; contour interval is 2.5 K, thick line 
corresponds to 30°C) at 513 hPa at t=0. The vertical axis corresponds to latitude (distance from 
bottom to top is 36°). The horizontal axis corresponds to longitude (distance from left to right is 
Lx=60°). Boundary conditions at the western and eastern boundary are periodic. The southern and 
northern boundaries are "open”. The computational domain in the meridional direction spans a 
distance of 69°. Therefore, the southern at northern boundaries are not shown in this figure. 
Geostrophic Q-vectors (red arrows) are shown only if the absolute value exceeds 5×10-12 

 K m-1 s-1. 
Other parameter values are, C=1° lat (eq. 10.59), Lx=60°, φ00=45°, φscale=4.5°=500 km, U=50 m s-1, 
f0=10-4 s-1, Γ0=0.0065 K m-1 and T0(z=0)=285 K (eq. 10.50). 
 
 
 If we neglect the curvature of the coordinate system and assume that the Coriolis 
parameter, f0, is constant, the model equations, are as follows: 
 

€ 

∂ps
∂t

+
1

acosφ
∂psu
∂λ

+
∂ psv cosφ( )

∂φ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ + ps

∂
∂σ

dσ
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0  ;     (10.54) 

 

€ 

∂psθ
∂t

= −
∂psuθ
∂x

+
∂psvθ
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

∂
∂σ

psθ
dσ
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
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FIGURE 10.8. The wind vectors and relative vorticity (contour interval is 0.1×10-4 s-1, zero-contour 
not shown, solid/blue: positive and grey/cyan: negative, at 513 hPa at t=0. Labels are in units of 10-
4 s-1. See figure 10.7 for the parameter-values. 
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 The zonal flow is perturbed, by making the reference-latitude, φ0, in eq. 10.53 a function 
of longitude, as follows. 
 
 

€ 

φ0 x( ) = φ00 +C sin 2πx /Lx( ),        (10.59) 
 
where φ00 is the central latitude, C is the latitudinal amplitude (in degrees) of the meander in 
the jet stream and Lx the horizontal extent of the domain, or the wavelength of the initial 
meander, or wave, in the jet stream. The central latitude is consistent with the chosen value 
of the Coriois parameter, in the case here: f=f0=10-4 s-1, which implies that φ00≈45°.  
 The initial geostrophic velocity distribution for p=513 hPa is shown in figure 10.8. If the 
prescribed temperature is a function of only latitude and height, the associated geostrophic 
flow is straight perfectly eastward. This is an exact balanced state. However, if the 
geopotential distribution is perturbed slightly, by making the reference-latitude, φ0, a 
function of longitude (eq. 10.59), the associated geostrophic flow does not represent an 
exact balanced state, because of the curvature of the flow. The imbalance is manifest in the 
Qg-vectors (figure 10.7), which point in eastward direction near the trough axis, and in 
westward direction near the ridge axis (section 9.8) and thus converge (diverge) to the east 
(west) of the trough. We know from the omega-equation (9.31) that this will lead to vertical 
motion. 
 If the atmosphere is in thermal wind balance, the baroclinic zone, which is centred 
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around y=y0, is associated with a relatively narrow jet. On the northern side of this jet  
relative vorticity is positive (in the northern hemisphere), while on its southern side relative 
vorticity is negative (figure 10.8). 
 In figure 10.9, the initial condition is shown in a longitudinal cross-section along the 
central latitude, φ=φ00 or y=y0 (figure 10.6). Note that this initial state is not the most 
unstable according to linear theory, since the wave is not “tilted” in the vertical (section 
9.7). Nevertheless, the trough is associated with ∂vg/∂x>0, while the ridge is associate with 
with ∂vg/∂x<0. The Q-vector forcing, observed in figure 10.7, is due to the term, 
 

€ 

Qg1 = −
∂vg
∂x

∂T
∂y

 .          (10.60) 

 
which yields Q-vectors pointing in opposite directions in, respectively the trough (eastward) 
and the ridge (westward), as was explained in sections 9.8 and 9.9. This represents a slight 
imbalance, which is the seminal state of a growing baroclinic wave. Remember that we have 
set β=0, so that, according to the linear analysis of small perturbations superposed on a 
horizontally homogeneous thermal wind, all waves with a longitudinal wavelength longer 
than a critical wavelength are baroclinically unstable (eq. 9.62). Indeed, the adiabatic, 
inviscid (no heating, no friction) evolution, simulated by the model, shows the development 
of a very realistic cyclone within 3 to 4 days (figure 10.14).  
 The phase difference between the thermal wave and the geopotential wave, as well as 
the vertical phase tilt of the trough, observed in figure 10.10, are not due to a fortuitous 
conjunction of circumstances, but are actually created by the wave itself (figure 10.8). 

 
FIGURE 10.9. The meridional component of the geostrophic wind (red contours, labeled in m s-1, 
positive is northward) and the potential temperature (cyan contours, labeled in K) as a function of 
longitude and pressure at the central latitude, φ=φ00. 
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FIGURE 10.10. Meridional component of the geostrophic wind (red contours, labeled in m s-1, 
positive is northward), the potential temperature (cyan contours, labeled in K) and wind-vector in 
the plane of the cross-section, relative to the zonal average wind-vector, as a function of longitude 
and pressure at the central latitude, φ=φ00, after half a day (upper panel) and after 1 day (lower 
panel). The warm front and the cold front are indicated by “wf” and by “cf” respectively.  
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FIGURE 10.11. Same as figure 10.9, except for after t=1.5 days (upper panel) and t=2 days (lower 
panel). Note that the warm sector is getting warmer, while the cold sector is getting colder. The 
implies that the zonal temperature gradients, |∂T/∂x|, between the cold sector and the warm sector, is 
increasing in time. Remember: air parcels do not cross isentropes! 
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FIGURE 10.12. As figure 10.10 and 10.11, except for t=2.5 days (upper panel) and t=3 days (lower 
panel). A low-level jet with northward winds has developed at the warm front. Likewise, an upper-
level jet with northward winds has developed above the cold front. Air parcels do not cross 
isentropes! Nearly all air, which is confined below the 290 K isentrope, i.e. air in the “Underworld”, 
flows equatorward, as part of a “cold air outbreak”, while air in the “Middleworld” or Overworld” 
flows both equatorward and poleward. 
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The growth of the wave-amplitude during the first three days is shown in longitudinal cross-
sections along the central latitude in figures 10.10-10-12. The initial development of vertical 
motion in the longitudinal plane (figure 10.10) is qualitatively in agreement with the 
solution of the omega-equation (9.31) (figure 9.16), i.e. we observe upward motion to the 
east of the trough and downward motion to the west of the trough. Upward motion leads to 
vortex stretching at low levels, which contributes to a positive tendency of relative vorticity. 
Since this effect is weaker at higher levels, the trough axis tends to develop a westward tilt 
with increasing height at low levels. At higher levels, the tilt of the trough-axis is in the 
opposite direction, i.e. eastward with increasing height. This is due to the effect of 
increasing (with height) eastward advection of relative vorticity by the strong eastward wind 
in the jet.  
 We also observe (figures 10.9-10-11) that, at y=y0, the cold sector becomes colder and 
that warm sector becomes warmer, implying frontogenesis in the y-direction. In the middle 
stage of the life-cycle of the unstable baroclinic wave (after 2 days) two northward jets 
appear, one at upper levels above the cold front and the other at low levels at the warm front.  
 In the horizontal cross-sections (figures 10.13 and 10.14) at 865 hPa (about 1200 m 
above the Earth’s surface) we observe the development of a cyclone and an anticyclone. We 
also see a very realistic temperature distribution, with a warm front, a cold front and a back-
bent front in accordance with the portrayal in figure 10.3.  
 During the first two days of the evolution the Qg-vectors point in a direction that is 
approximately parallel to the isentropes (figure 10.7), indicating that the frontogenetic 
process is associated principally with the turning of the isentropes, and much less with the 
material change with time of the absolute value of the temperature gradient (section 1.37). 
 On days 3 and 4 the amplitude of the Qg-vectors has in general increased. Qg-vectors 
point up the temperature gradient almost everywhere along the fronts. This indicates a 
positive tendency of the absolute temperature gradient. The only exception is the back-bent 
front, where the Qg-vectors are approximately parallel to the isotherms, which indicates that 
frontogenesis here is related to the rotation of the isentropes (changing direction of the 
temperature gradient), which is not surprising, since the back-bent front is located in the core 
of the cyclone.  
 On days 3 and 4 we also observe (figure 10.14) strongly diverging Qg-vectors in the 
region between the cold front and the back-bent front. In accordance with the solution of the 
omega eq. (9.31), which states that downward motion should occur in a region of Qg-vector 
divergence, motion is indeed downward in this region (figure 10.15). This explains the 
existence of the “dry intrusion” (figure 9.6d) in which dry stratospheric air descends and 
sometimes reaches relatively low levels in the troposphere. Also in accordance with the 
solution of the omega eq. 9.31, we observe upward (downward) motion on the warm (cold) 
side of the cold front. 
 Due to the westward tilt of both the trough- and ridge axis, nearly all air in the 
Underworld, confined below the 290 K isentrope, flows equatorward. This equatorward 
flow is referred to as a ”cold air outbreak”, in which the low level potentially cold air mass 
on the poleward side of the front is “discharged”, leading to a reduction of the zonal mean 
surface pressure on the poleward side of the front and an increase of the associated surface 
zonal component of the geostrophic wind (figure 10.19). 
 A schematic picture of the general nature of the motion in a mature cyclone and its 
surroundings is shown in figure 10.16, looking northwards in the northern hemisphere. The 
descending air west of the surface low, on reaching middle levels, splits into two branches, 
A and B, turning anticyclonically and cyclonically, respectively. Branch B represents the dry 
intrusion. Air originating at lower levels in the warm sector, equatorward of the surface low, 
rises and splits into two branches C and D.  
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FIGURE 10.13. Early stage of the life-cycle of an adiabatic inviscid baroclinic wave at 865 hPa as 
simulated by a 36-level primitive equation model. The geopotential height, indicated by thin solid 
dark blue lines (contour interval is 50 m, thick line corresponds to 5200 m) and the potential 
temperature indicated by cyan lines (contour interval is 2.5 K, thick line corresponds to 15 °C). 
Geostrophic Q-vectors (red arrows) are shown only if the absolute value exceeds 5×10-12 

 K m-1 s-1. 
The vertical axis corresponds to latitude. The horizontal axis corresponds to longitude. The boundary 
conditions at the western and eastern boundary are periodic. More information is given in the caption 
of figure 10.7.  
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FIGURE 10.14. Mature stage of the life-cycle of an adiabatic inviscid baroclinic wave at 865 hPa as 
simulated by a 36-level primitive equation model. More information is given in the caption of figure 
10.13. Note the change in scale of the Qg-vectors (red arrows) in this figure compared to figure 
10.13. The warm front is indicated by “wf”. The cold front is indicated by “cf”. The back-bent front 
is indicated by “bbf”. On the following web site you will find animations of this integration (“run 
200”): http://www.staff.science.uu.nl/~delde102/BaroclinicLifeCycle.htm. 
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FIGURE 10.15. Isobaric wind vectors and the vertical velocity (labeled in hPa hr-1; blue: upward 
motion; red: downward motion; contour interval is 2 hPa hr-1) at t=4 days, at the pressure levels 
corresponding to p=513 hPa (upper panel) p=865 hPa (lower panel), See figure 10.7 for further 
information about the parameter values. 
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FIGURE 10.16. A schematic of isentropic relative flow within a baroclinic wave. Solid arrows represent flow 
along a sloping isentropic surface. The surface pressure pattern is indicated (see text for more details) (from 
Thorncroft, C.D., B.J. Hoskins and M.E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle 
behaviour. Q.J.R.Meteorol.Soc., 119, 17-55). 
 

 
FIGURE 10.17. A cyclone with a cloud pattern that resembles a “hammer-head” (24 November 2012, 
14:00 UTC) (MSG infra-red image). 
 
To the extent that condensation occurs in the moist warm sector branch, as it rises, there will 
be enhanced ascent involving cross-isentropic flow. This pattern of air motion may then 
result in a cloud pattern with a hammer-head appearance (figure 10.17). Since the 
descending air is certain to be unsaturated, and indeed likely to be very dry, its cyclonic 
branch B may cut in behind the rising moister air and form a "dry slot" (figure 9.6).  
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FIGURE 10.18. The flow field (wind vectors) and the absolute value of the temperature gradient 
(blue solid lines; contour interval is 0.4.10-5 K m-1, labels are in units of 10-5 K m-1), at different 
times (indicated in the lower right corner of each figure, for p=865 hPa. The minimum contour-value 
shown is 1.2×10-5 K m-1. The warm front is indicated by “wf”. The cold front is indicated by “cf”. 
The back-bent front is indicated by “bbf”. See figure 10.6 for further information about the 
parameter values. After 72 hours we clearly recognise the “frontal T-bone” of the Shapiro-Keyser 
conceptual model (figure 10.3). The increase of the absolute value of the temperature gradient at 865 
hPa is quite spectacular! See the animation of the development of the frontal system at 
http://www.staff.science.uu.nl/~delde102/BaroclinicLifeCycle.htm 
 
 The morphology of the cold front, the warm front and the backbent front and the 
evolution of these fronts (figure 10.18), including the frontal fracture, is very much in 
accordance with the schematic portrayal given in figure 10.3. In fact the simulated middle-
latitude unstable baroclinic wave goes through an impressively recognisable life-cycle. 
Truly remarkable is the increase of the strength of the fronts, i.e. the increase of gradients, in 
a freely evolving flow, especially after day 2!  
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FIGURE 10.19. Meridional cross-section showing the zonal average zonal wind (black contours, 
labeled in units of m s-1) and the zonal average potential temperature (cyan, labeled in units of K) at 
t=3 days (upper panel) and at t=4 days (lower panel). The initial state is shown in figure 10.5. The y-
coordinate (latitude) increases towards the right. Note: the increase of the intensity of the surface 
westerlies, below the jet. 
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10.8  Wave-mean flow interaction and the Ferrel cell 
 
Figure 10.19 shows meridional cross-sections of the zonal average state at t=3 days (upper 
panel) and at t=4 days (lower panel). The initial zonal average state is shown in figure 10.6. 
The meridional flux of heat by the growing baroclinic wave has led to a reduction of the 
zonally averaged temperature gradient in the “mixing zone”. At low levels the meridional 
temperature gradient at the central latitude has been reduced practically to zero. At the 
surface, eastward winds (u>0) have developed in a belt around the central latitude (note: 
there was no wind at the surface initially). Westward winds (u<0) to the north and to the 
south of this belt are associated with new baroclinic zones (or fronts) that have formed at the 
southern and northern edges of the “mixing zone”. The jet at upper levels has weakened. 
 Clearly, the zonal mean state of the atmosphere has been altered by the zonal 
asymmetries, i.e. by the baroclinic wave. In other words, “wave-mean flow interaction” 
has accelerated the zonal mean eastward flow at low levels and decelerated the zonal mean 
eastward flow at upper levels. If the effect of waves is to decelerate the mean eastward flow, 
this is referred to as “planetary wave-drag” (chapter 11).  

 
FIGURE 10.20. Meridional cross-section showing the zonal average of the vertical velocity, dp/dt 
(blue contours indicate upward motion; red contours indicate downward motion; labeled in 
units of 0.1 hPa hr-1) and the zonal average of the potential temperature (cyan, labeled in units of K) 
at t=4 days in the model. The initial state is shown in figure 10.5. The circulation in the eddy-mixing 
zone in mid-latitudes is called “Ferrel circulation”. The y-coordinate (latitude) increases towards 
the right. 
 
 Figure 10.20 shows the zonal mean vertical velocity at t=4 days. A thermally indirect 
zonal mean meridional circulation, referred to as the “Ferrel cell”, with upward motion 
on the cold poleward side and downward motion on the warm equatorward side, is observed. 
The circulation is closed by poleward zonal mean motion at low levels and equatorward 
zonal mean motion at upper levels, which is implicit but not shown in figure 10.20. With 
eastward flow in the northern hemisphere, this yields zonal mean winds blowing from the 
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south-west at low levels, and zonal mean winds blowing from the north-west at upper levels, 
in accordance with observations.  
 William Ferrel and James Thomson20 attributed the poleward flow at low levels to 
friction near the Earth’s surface, which should lead to a downward decrease of the eastward 
wind speed, with no attendant decrease of the merdional pressure gradient. As a result, a 
poleward flow would have to develop, forming the surface branch of an indirect meridional 
circulation.  

 

 
 
FIGURE 10.21. Traditional schematic view of the principal meridional circulation cells in the 
troposphere of Earth at equinox, deduced from the velocity distribution. Source: figure 1.15 of K. 
Mohanakumar: Stratosphere Tropospher Interactions. An Introduction. Springer, 2008. 
 
 It will be demonstrated in section 11.5 that the “Ferrel circulation” (figure 10.21), is a 
dynamical consequence of the presence of eddies and waves that transport sensible heat and 
momentum from the tropics to the Pole, or vice-versa. This transport brings the state out of 
zonal mean thermal wind balance. The Ferrel circulation is required to maintain the zonal 
mean thermal wind balance, in the same way as a cross-frontal circulation in a frontal region 
is required to maintain thermal wind balance in the presence of frontogenesis or frontolysis 
(chapter 9). 
 
 
10.9  Meridional circulation of mass 

 
We may take a very different viewpoint by plotting the zonal mean meridional mass flux in 
a cross section with potential temperature as a vertical coordinate, instead of pressure. The 
total zonal mean instantaneous meridional isentropic mass flux is defined as [vσ]. Here σ is 
isentropic density, defined in eq. 9 of Box 7.1. Square brackets indicate a zonal mean. The 
unit of mass flux is kg m-1 K-1 s-1. Figure 10.22 shows a cross section of [vσ] in isentropic 
coordinates at t=4 days, which proves that the total meridional mass flux in the mature stage 
of the life cycle of an adiabatic unstable baroclinic wave is poleward in the Middleworld 
(θ>295 K in the simulation) and equatorward in the Underworld (θ<295 K in the 
simulation). The poleward mass flux in the Middleworld is directed down the pressure 
gradient (i.e is upward), while the equatorward mass flux in the Underworld is directed up 

                                                
20 James Thomson is the older brother of the more famous William Thomson or Lord Kelvin. 
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the pressure gradient (i.e is downward). This viewpoint, therefore, reveals that, if the 
influence of zonal asymmetries (eddies and waves) on the meridional mass flux is taken into 
account, a zonal mean circulation of mass exists, which is opposite in direction to the Ferrel 
circulation! In fact, cross-isentropic flow is prohibited in this simulation, because of the 
assumed adiabatic conditions. A real mass-circulation cannot exist in statically sable 
adiabatic conditions. All motion takes place along isentropes. We are allowed to use 
potential temperature as a vertical coordinate as long as there is no vertical folding of 
isentropes, which would immediately render the atmosphere absolutely unstable. In a 
vertical cross-section with potential temperature as the vertical coordinate, mass is 
transported only in the horizontal direction, if conditions remain adiabatic. The poleward 
isentropic mass flux will stop at the end of the adiabatic baroclinic life-cycle. 

 
FIGURE 10.22. Zonal mean isentropic mass flux (thick solid and dashed contours), labeled in units of 
Kg m-1K-1s-1, and pressure (thin contours), labeled in units of hPa,  at t=96 hours in the adiabatic 
baroclinic life-cycle simulation. The brown line represents p=1000 hPa, which represents the 
approximate position of Earth’s surface. In this coordinate system adiabatic conditions are revealed 
by the asbsence of vertical motion, i.e. by the absence of cross-isentropic mass flux. The central 
latitude, y=y0, corresponds to a latitude of 45°. 
 
 In the real atmosphere cross isentropic flow occurs due to either radiative flux divergence 
or due to latent release. Let us, for simplicity, ignore latent heat release. Diabatic heating 
(cross-isentropic upwelling) and diabatic cooling (cross-isentropic downwelling), due to 
radiative flux divergence, operates much like a linear relaxation process, in which the 
temperature always tends towards a “radiatively determined state”21. Therefore, the thermal 

                                                
21 The concept of “radiatively determined state” is defined in sections 2.4 and 12.3. The Held-Hou model of the 
Hadley circulation makes use of this concept (chapter 8). 
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effect of radiative flux divergence is frequently simplified by the following equation (see 
also eq. 8.8). 
 

€ 

∂T
∂t

= −λN T −TR( )  .         (10.61) 

 
TR represents the temperature of the radiatively determined state, which in many textbooks 
and scientific publications, is erroneously referred to in this context as the “radiative 
equilibrium state”22. The constant of proportionality, λN, is called “Newtonian cooling 
coefficient” (λN>0). The inverse of λN is a measure of the time required to adjust to the 
radiatively determined state, which is very similar to the radiative equilibrium time scale, 
defined in section 2.4. A reasonable estimate for this time scale in the atmosphere is 10-15 
days. Here we choose λN= 10-6 s-1, which is associated with a time scale of 11.57 days. The 
simulation was repeated with this value of λN and with TR identical to the zonal mean 
temperature distribution at initial time (figure 10.6), which implies that the diabatic process 
will tend to restore the initial baroclinicity. 

 
FIGURE 10.23. Zonal mean isentropic mass flux (thick solid and dashed contours), labeled in units of 
Kg m-1K-1s-1, and pressure (thin contours), labeled in units of hPa,  at t=96 hours in the diabatic 
baroclinic life-cycle simulation. The red/blue contours represent isopleths of zonal mean cross-
isentropic flow (=[dθ/dt]) , labeled in K day-1 (red: upwelling; blue: downwelling). The brown line 
represents p=1000 hPa, which coincides with the approximate position of Earth’s surface. The 
central latitude, y=y0, corresponds to a latitude of 45°.  

                                                
22 Radiatively determined temperature and the radiative equilibrium temperature are usually not distinguished in 
the scientific literature when a Newtonian cooling parametrisation is introduced (see chapters 2 and section 12.3 
for an explanation of this distinction).  
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FIGURE 10.24. A popular and schematic view of the four branches of the long term average 
Brewer-Dobson circulation (BDC), according to Holton, et al. (1995). The position of the 
dynamical tropopause is indicated by the thick line. Thin solid lines represent isentropes, labeled in 
K. The 400 K isentrope is shown as a dashed line. The heavy shaded region is the lowermost 
stratosphere, which is part of the “Middleworld”, or the extra-tropical lower stratosphere, where 
isentropic surfaces intersect the dynamical tropopause. The region above 380 K is called 
“Overworld”, in which isentropes lie entirely in the stratosphere. Light shading in the Overworld 
indicates the region of planetary wave-induced “forcing” of an average poleward drift of air, which 
is sometimes referred to as the “extra-tropical pump”. The wavy double-headed arrows denote 
meridional mass-flux by eddy-motions, which represent the meridional component of the BDC. The 
broad arrows represent cross-isentropic flux by the BDC, which is driven by the extra-tropical pump-
mechanism. A mathematical explanation of this mechanism is given in chapter 11 (see also section 
12.9). The equatorward flow branch of the BDC (not shown explicitly in this figure) involves 
equatorward flow of cold polar air in the “Underworld” in “cold-air outbreaks” behind cold fronts, 
together with cross-isentropic upwelling of this air into the Middleworld. The cross-isentropic 
branches of the BDC restore atmospheric baroclinicity in middle latitudes. Source: Holton, J.R., et 
al., 1995: Stratosphere-troposphere exchange. Reviews of Geophysics, 33, 403-439. 
 
The adiabatic process, which tends to destroy zonal mean barolinicity, will be counteracted 
by the diabatic process, which refuels zonal mean baroclinicity by pumping mass from the 
Middleworld into the Underworld on the poleward side of the baroclinic zone, while 
pumping mass from the Underworld back into the Middleworld on the equatorward side of 
the baroclinic zone. This is illustrated in figure 10.23, which shows that cross-isentropic 
downwelling occurs on the poleward side of the central latitude (45°), while cross-isentropic 
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upwelling occurs on the equatorward side of the central latitude on day 4 of the simulation. 
Therefore, this diabatic simulation of the life cycle of an unstable baroclinic wave produces 
a realistic “diabatic circulation of mass”. Note that the intensity of the isentropic 
component of this mass flux is hardly affected by the cross-isentropic mass flux (compare 
figures 10.22 and 10.23). 

- 

FIGURE 10.25. Monthly mean, zonal mean isentropic mass flux as a function of potential 
temperature (the vertical coordinate) and latitude for January (ensemble average for the years 1979-
2017). Red contours and shading corresponds to a northward mass flux. Blue contours and 
shading corresponds to a southward mass flux. Contours are drawn at 50 [kg s-1 K-1 per metre in 
longitude] intervals. Shading starts at ±5 kg s-1 K-1 per m in longitude. Black contours represent lines 
of constant pressure (isobars), labeled in hPa. Deduced from the 6-hourly ERA-Interim reanalysis of 
pressure and wind on isentropic levels and at the earth’s surface (http://apps.ecmwf.int/datasets/). 
The isentropic mass flux in the middle latitudes, shown in this figure, is an ensemble average over 38 
months of January, while the isentropic mass flux, shown in figure 10.23,  is instantaneous and 
representative for the mature, most intense phase, of an unstable baroclinic wave. 
 
 Traditionally, the zonal mean meridional atmospheric circulation is divided into three 
cells (figure 10.21). The Hadley cell, which is driven by radiative and latent heating in 
the tropics, is discussed in chapter 8. Theoretical reasons are given for its limited 
latitudinal extent. The indirect meridional circulation cell in middle latitudes, i.e. the “Ferrel 
cell”, is “mechanically forced” (section 11.5), but, as we saw above, the Ferrel circulation 
does not represent the actual circulation of mass in middle latitudes, which is revealed only 
if mass tranport by eddies is included. This mass-circulation has been given the name, 
“Brewer-Dobson circulation”, after Alan Brewer and Gordon Dobson, who discovered  a 
systematic poleward stratospheric flux of ozone (Dobson) and of water vapour and Helium 
(Brewer), from measurements of these constituents in the stratosphere.  
 A popular portrayal of the Brewer-Dobson mass-circulation, averaged over many 
baroclinic life cycles is given in figure 10.24. This figure gives the impression that most or 
all the poleward mass flux occurs in the stratosphere. This is not true as is shown in figure 
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10.25. Most of the meridional mass flux occurs in the troposphere in connection with 
baroclinic waves and has a relatively simple zonal mean pattern, which is very similar to the 
modelled zonal mean pattern displayed in figure 10.23. The most intense zonal mean 
poleward mass flux in the middle latitudes of the winter hemisphere (in the order of 100 kg 
s-1K m-1) occurs at about 50°N and θ=290-305 K, or in the layer p=400-600 hPa. A zonal 
mean net equatorward mass flux at 50°N is observed below θ=285 K (or below p=700 hPa). 
The return-flow of the “Brewer-Dobson circulation”, therefore, occurs in a relatively 
shallow layer. Figure 10.25 also indicates that the stratospheric part of the poleward branch 
of “Brewer-Dobson circulation”, above 200 hPa, is very weak (<<5 kg s-1K m-1). 
 
PROBLEM 10.1. Analysis of a simulation of consecutive baroclinic life-cycles on a 
large domain 
Investigate the output of a simulation of several consecutive life cycles of unstable 
baroclinic waves on a large domain. Relate the appearance of growing baroclinic waves to 
frontogenesis, represented by the Q-vector, and the associated pattern of vertical motion. Is 
this pattern of vertical motion in agreement with the predictions made by the solution of the 
omega equation (eq. 9.31)? Describe the variations in the intensity of the Ferrel circulation 
and correlate these variations with the zonal mean eddy meridional heat flux. The zonal 
mean meridional heat flux in pressure coordinates is usually calculated by evaluating 
 

€ 

vθ[ ] = v[ ] θ[ ] + v *θ *[ ] 
 
(see section 11.3 for the definition of square bracket and the asterisk). The first term on the 
r.h.s. of this equation represents the heat flux due to the Ferrel circulation, while the second 
term represents the eddy heat flux . Can you identify a relation between the first and second 
term from the output of the simulation?  Model data and Python-software will be provided. 
 
PROBLEM 10.2. Analysis of a simulation of a “storm track” by “downstream 
development” 
In reality, the atmosphere is baroclinically unstable in retricted areas, such as on the west 
side of the Atlantic and Pacific oceans. Wave-like disturbances start growing in these areas, 
but many times the most intense cyclones develop further downstream in weakly baroclinic 
regions. This phenomenon, which is known as “downstream development” leads to the 
formation of a storm track consisting of unstable baroclinic waves in different stages of their 
development. In this exercise the output of a simulation of such a storm track is provided. 
Read the paper by Chang (1993) and analyse the dynamics of the simulated storm track in 
relation to the content of this paper. Model data and Python-software will be provided. 

 
PROBLEM 10.3. The isentropic tropopause 
The isentropic tropopause at approximately 30°N, in the layer between θ=330 and θ=370 K 
is characterised by an intense latitudinal isentropic potential vorticity gradient, which 
resembles a so-called “PV-step” (chapter 7) (figure 10.26). Despite frequent disruptions by 
waves and eddies, the time mean isentropic tropopause remains remarkably sharp and 
zonally symmetric. How is this possible? Is this due to the zonal symmetry of the isentropic 
mass flux convergence at the poleward edge of the upper outflow leg of the Hadley 
circulation? Is this due to the zonal symmetry of the cross-isentropic downwelling branch of 
the Hadley ciculation?   In other words, how zonally symmetric are the upper and downward 
branches of the Hadley circulation?  
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FIGURE 10.26. Time-average distribution of potential vorticity (Z) between 1 December 2009 and 28 February 
2010 on the 350 K isentropic surface in the “Middleworld” on the Northern hemisphere, as a function of 
latitude (°N) and longitude (°E). Red contours correspond to 1, 2, 3, 4 and 5 PVU (tropical air). Blue contours 
correspond to 6, 7, 8, 9, 10 PVU and higher (extra-tropical air).   
 
 The zonal mean isentropic meridional mass flux can be separated into a mean component 
and an eddy-component as follows: 
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vσ[ ] = v[ ] σ[ ] + v *σ *[ ]. 
 
Similarly, the zonal mean cross-isentropic meridional mass flux can be separated into a 
mean component and an eddy-component as follows: 
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Investigate the above questions by comparing the mean isentropic mass flux and eddy 
isentropic mass flux at θ=340 K and by comparing the mean cross-isentropic mass flux and 
eddy cross-isentropic mass flux at θ=340 K (figure 10.25). Data and sript will be provided. 
 

 
ABSTRACT OF CHAPTER 10 

 
Chapter 10 describes the structure of the dynamical core of a hydrostatic numerical 
primitive equation model of the atmospheric circulation. These models use σ=p/ps as a 
vertical coordinate (sigma-coordinate). This avoids problems with imposing upper and 
lower boundary conditions.  
 A sigma coordinate hydrostatic model is used to simulate the life cycle of an unstable 
baroclinic wave. This is done for highly idealised conditions, neglecting the effect of the 
curvature of the Earth’s surface (f is constant) and assuming adiabatic conditions, which 
implies that air parcels cannot cross isentropes. Despite these idealisations, the modeled life 
cycle of an unstable baroclinic wave, starting from an west-east oriented front and 
associated jet, is remarkably realistic. The formation of a cyclone with a warm front, a cold 
front and a back-bent front, including the frontal fracture during the mature stage of the 
life cycle, after 4 days, are reproduced by the model exactly as portrayed by the conceptual 
model, which was proposed by the Bergen School in the 1920’s and by Shapiro and Keyser 
in 1990.  
 The qualitative predictions made by the omega equation (chapter 9), about the pattern of 
vertical motion within a baroclinic wave, are verified by the simulation, i.e upward  motion 
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occurs east of the upper level trough, while downward motion (subsidence) occurs west of 
the upper level trough. 
 An important action of middle latitude baroclinic waves and eddies is to transport heat 
in the poleward direction and thus to reduce the zonal mean meridional temperature 
gradient as well as the associated vertical shear of the zonal wind. According to quasi-
geostrophic theory this requires a zonal mean meridional indirect circulation with upward 
motion on the cold (poleward) side and downward motion on the warm (equatorward) side. 
This circulation is named “Ferrel circulation”, in honour of William Ferrel, one of the 
founding fathers of modern dynamical meteorology.  
 The apparent inconsistency between the indirect Ferrel circulation and the direct 
Brewer-Dobson circulation is illustrated and reconciled. This issue is addressed further in 
chapters 11 and 12.  
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